CAOP

Equations

Graphical Representation of ChebyshevT Polynomials

Definition

The ChebyshevT polynomials are defined as

\[ \begin{align} T_n(x) &= \frac{n}{2}\,\sum_{k=0}^{[n/2]} \frac{(-1)^k\,(n-k-1)!}{k!\,(n-2k)!}\,(2x)^{n-2k}\\ &= \frac{1}{2} (2x)^n {}_2F_1 \left(\left. {-n/2, -n/2+\frac{1}{2} \atop -n+1} \; \right| \frac{1}{x^2} \right) \end{align} \]

Plot

Note: You can choose a selection on the small graph in order to zoom. Mark the check boxes on the left side for which n you want to plot the graph.

Parameters

factor (use Maple-style input)