CAOP

Plot

Meixner-Pollaczek Polynomials

Definition

The Meixner-Pollaczek polynomials are defined as

\[ \begin{align} P_n^\lambda(x;\phi) &= \frac{(2 \lambda)_n}{n!} e^{i n \phi} \sum_{k=0}^n \frac{(-n)_k (\lambda + i x)_k}{(2\lambda)_k k!} \left(1-e^{-2i\phi}\right)^k\\ &= \frac{(2 a)_n}{n!} e^{i n \phi} {}_2F_1 \left(\left. {-n, \lambda+i x \atop 2\lambda} \; \right| 1-e^{-2i \phi} \right) \end{align} \]

Difference Equation

Recurrence Equation

Parameters

Variables

\(n\)

\(x\)

Parameters

\(\lambda\) \(\lambda > 0\)

\(\phi\) \(0 < \phi < \pi\)

factor (use Maple-style input)

   hypergeometric term in \(n\) and hypergeometric term in \(x\) required