CAOP

Plot

Continuous Dual Hahn Polynomials

Definition

The Continuous Dual Hahn polynomials are defined as

\[ \begin{align} S_n(x^2;a,b,c) &= (a+b)_n (a+c)_n \sum_{k=0}^n \frac{(-n)_k (a+i x)_k (a-i x)_k}{(a+b)_k (a+c)_k k!}\\ &= (a+b)_n (a+c)_n {}_3F_2 \left(\left. {-n, a+i x, a-i x \atop a+b, a+c} \; \right| 1 \right) \end{align} \]

Difference Equation

Recurrence Equation

Parameters

Variables

\(n\)

\(x\)

Parameters

\(a\) \(\)

\(b\) \(\)

\(c\) \(\)

factor (use Maple-style input)

   hypergeometric term in \(n\) and hypergeometric term in \(x\) required