CAOP

Plot

Racah Polynomials

Definition

The Racah polynomials are defined as

\[ \begin{align} R_n(\lambda(x);\alpha,\beta,\gamma,\delta) &= \sum_{k=0}^n \frac{(-n)_k (n+\alpha+\beta+1)_k (-x)_k (x+\gamma+\delta+1)_k}{(\alpha+1)_k (\beta+\delta+1)_k (\delta+1)_k k!}\\ &= {}_4F_3 \left(\left. {-n, n+\alpha+\beta+1, -x, x+\gamma+\delta+1\atop \alpha+1, \beta+\delta+1, \gamma+1} \; \right| 1 \right) \end{align} \]

Difference Equation

Recurrence Equation

Parameters

Variables

\(n\)

\(x\)

Parameters

\(\alpha\) \(\)

\(\beta\) \(\)

\(\gamma\) \(\)

\(\delta\) \(\)

factor (use Maple-style input)

   hypergeometric term in \(n\) and hypergeometric term in \(x\) required