CAOP

Plot

Legendre Polynomials

Definition

The Legendre polynomials are defined as

\[ \begin{align} P_n(x) &= \frac{1}{2^n}\,\sum_{k=0}^{[n/2]} (-1)^k\,{n\choose k}\,{2n-2k\choose n}\,x^{n-2k}\\ &= {2n \choose n} \left(\frac{x}{2}\right)^n {}_2F_1 \left(\left. {-n/2+\frac{1}{2}, -n/2 \atop -n+\frac{1}{2}} \; \right| \frac{1}{x^2} \right) \end{align} \]

Differential Equation

Recurrence Equation

Parameters

Variables

\(n\)

\(x\)

factor (use Maple-style input)

   hypergeometric term in \(n\) and hyperexponential term in \(x\) required