CAOP

Askey Wilson Polynomials

Definition

The Askey Wilson polynomials are defined as

\[ \begin{align} p_n(x;a,b,c,d|q) &= a^{-n}(a b, a c, a d; q)_n \sum_{k=0}^\infty \frac{(q^{-n};q)_k (abcdq^{n-1};q)_k (ae^{it};q)_k (ae^{-it};q)_k}{(ab;q)_k (ac;q)_k (ad;q)_k (q;q)_k} q^k\\ &= a^{-n}(a b, a c, a d; q)_n {}_{4}\phi_{3}\!\left(\left. {q^{-n}, abcdq^{n-1}, a e^{it}, a e^{-it} \atop ab, ac, ad} \; \right| q ; q \right),\quad x=\cos(t) \end{align} \]

q-Recurrence Equation

Parameters

Variables

\(n\)

\(x\)

\(q\)

Parameters

\(a\) \(\)

\(b\) \(\)

\(c\) \(\)

\(d\) \(\)

factor (use Maple-style input)

   q-hypergeometric term in \(n\)