- Askey Wilson
- q-Racah
- Continuous Dual q-Hahn
- Continuous q-Hahn
- Big q-Jacobi
- q-Hahn
- Dual q-Hahn
- Al Salam Chihara
- q-Meixner Pollaczek
- Continuous q-Jacobi
- Big q-Laguerre
- Little q-Jacobi
- q-Meixner
- Quantum q-Krawtchouk
- q-Krawtchouk
- Affine q-Krawtchouk
- Dual q-Krawtchouk
- Continuous Big q-Hermite
- Continuous q-Laguerre
- Little q-Laguerre / Wall
- q-Laguerre
- Alternative q-Charlier
- q-Charlier
- Al-Salam-Carlitz I
- Al-Salam-Carlitz II
- Continuous q-Hermite
- Stieltjes-Wigert
- Discrete q-Hermite I
- Discrete q-Hermite II
Discrete q-Hermite II Polynomials
Definition
The Discrete q-Hermite II polynomials are defined as
\[
\begin{align}
h_n(x;q) &= i^{-n} q^{-{n \choose 2}} \sum_{k=0}^\infty \frac{(q^{-n};q)_k (ix;q)_k}{(q;q)_k} q^{-{k \choose 2}} \left(q^n\right)^k\\
&= i^{-n} q^{-{n \choose 2}} {}_{2}\phi_{0}\!\left(\left. {q^{-n}, ix \atop -} \; \right| q ; -q^n \right)
\end{align}
\]