- Askey Wilson
- q-Racah
- Continuous Dual q-Hahn
- Continuous q-Hahn
- Big q-Jacobi
- q-Hahn
- Dual q-Hahn
- Al Salam Chihara
- q-Meixner Pollaczek
- Continuous q-Jacobi
- Big q-Laguerre
- Little q-Jacobi
- q-Meixner
- Quantum q-Krawtchouk
- q-Krawtchouk
- Affine q-Krawtchouk
- Dual q-Krawtchouk
- Continuous Big q-Hermite
- Continuous q-Laguerre
- Little q-Laguerre / Wall
- q-Laguerre
- Alternative q-Charlier
- q-Charlier
- Al-Salam-Carlitz I
- Al-Salam-Carlitz II
- Continuous q-Hermite
- Stieltjes-Wigert
- Discrete q-Hermite I
- Discrete q-Hermite II
q-Charlier Polynomials
Definition
The q-Charlier polynomials are defined as
\[
\begin{align}
C_n(q^{-x}; a; q) &= (-a^{-1}q;q)_n \sum_{k=0}^\infty \frac{(q^{-n};q)_k}{(-a^{-1}q;q)_k (q;q)_k} q^{k \choose 2} \left(\frac{q^{n+1-x}}{a}\right)^k\\
&= (-a^{-1}q;q)_n {}_{1}\phi_{1}\!\left(\left. {q^{-n} \atop -a^{-1}q} \; \right| q ; -\frac{q^{n+1-x}}{a} \right)
\end{align}
\]