- Askey Wilson
- q-Racah
- Continuous Dual q-Hahn
- Continuous q-Hahn
- Big q-Jacobi
- q-Hahn
- Dual q-Hahn
- Al Salam Chihara
- q-Meixner Pollaczek
- Continuous q-Jacobi
- Big q-Laguerre
- Little q-Jacobi
- q-Meixner
- Quantum q-Krawtchouk
- q-Krawtchouk
- Affine q-Krawtchouk
- Dual q-Krawtchouk
- Continuous Big q-Hermite
- Continuous q-Laguerre
- Little q-Laguerre / Wall
- q-Laguerre
- Alternative q-Charlier
- q-Charlier
- Al-Salam-Carlitz I
- Al-Salam-Carlitz II
- Continuous q-Hermite
- Stieltjes-Wigert
- Discrete q-Hermite I
- Discrete q-Hermite II
Continuous q-Jacobi Polynomials
Definition
The Continuous q-Jacobi polynomials are defined as
\[
\begin{align}
P_n^{(a,b)}(x|q) &= \frac{(q^{a+1};q,n)}{(q;q,n)} \sum_{k=0}^\infty \frac{(q^{-n};q)_k (q^{n+a+b+1};q)_k (q^{1/2a+1/4}e^{it};q)_k (q^{1/2a+1/4}e^{-it};q)_k}{(q^{a+1};q)_k (-q^{1/2(a+b+1)};q)_k (-q^{1/2(a+b+2)};q)_k (q;q)_k} q^k\\
&= \frac{(q^{a+1};q,n)}{(q;q,n)} {}_{3}\phi_{2}\!\left(\left. {q^{-n}, q^{n+a+b+1}, q^{1/2a+1/4}e^{it}, q^{1/2a+1/4}e^{-it} \atop q^{a+1}, -q^{1/2(a+b+1)}, -q^{1/2(a+b+2)}} \; \right| q ; q \right),\quad x=\cos(t)
\end{align}
\]