- Askey Wilson
- q-Racah
- Continuous Dual q-Hahn
- Continuous q-Hahn
- Big q-Jacobi
- q-Hahn
- Dual q-Hahn
- Al Salam Chihara
- q-Meixner Pollaczek
- Continuous q-Jacobi
- Big q-Laguerre
- Little q-Jacobi
- q-Meixner
- Quantum q-Krawtchouk
- q-Krawtchouk
- Affine q-Krawtchouk
- Dual q-Krawtchouk
- Continuous Big q-Hermite
- Continuous q-Laguerre
- Little q-Laguerre / Wall
- q-Laguerre
- Alternative q-Charlier
- q-Charlier
- Al-Salam-Carlitz I
- Al-Salam-Carlitz II
- Continuous q-Hermite
- Stieltjes-Wigert
- Discrete q-Hermite I
- Discrete q-Hermite II
Continuous q-Hermite Polynomials
Definition
The Continuous q-Hermite polynomials are defined as
\[
\begin{align}
H_n(x|q) &= e^{in\theta} \sum_{k=0}^\infty \frac{(q^{-n};q)_k}{(q;q)_k} (-1)^k q^{-{k \choose 2}} \left(q^ne^{-2i\theta}\right)^k\\
&= e^{in\theta} {}_{2}\phi_{0}\!\left(\left. {q^{-n}, 0 \atop -} \; \right| q ; q^ne^{-2i\theta} \right),\quad x=\cos(\theta)
\end{align}
\]