- Askey Wilson
 - q-Racah
 - Continuous Dual q-Hahn
 - Continuous q-Hahn
 - Big q-Jacobi
 - q-Hahn
 - Dual q-Hahn
 - Al Salam Chihara
 - q-Meixner Pollaczek
 - Continuous q-Jacobi
 - Big q-Laguerre
 - Little q-Jacobi
 - q-Meixner
 - Quantum q-Krawtchouk
 - q-Krawtchouk
 - Affine q-Krawtchouk
 - Dual q-Krawtchouk
 - Continuous Big q-Hermite
 - Continuous q-Laguerre
 - Little q-Laguerre / Wall
 - q-Laguerre
 - Alternative q-Charlier
 - q-Charlier
 - Al-Salam-Carlitz I
 - Al-Salam-Carlitz II
 - Continuous q-Hermite
 - Stieltjes-Wigert
 - Discrete q-Hermite I
 - Discrete q-Hermite II
 
Big q-Laguerre Polynomials
Definition
The Big q-Laguerre polynomials are defined as
\[
  \begin{align}
    P_n(x;a,b;q) &= \frac{1}{(b^{-1}q^{-n};q)_n} \sum_{k=0}^\infty \frac{(q^{-n};q)_k (aqx^{-1};q)_k}{(aq;q)_k (q;q)_k}\left(\frac{x}{b}\right)^k\\
                          &= \frac{1}{(b^{-1}q^{-n};q)_n} {}_{2}\phi_{1}\!\left(\left. {q^{-n}, aqx^{-1}\atop a q} \; \right| q ; \frac{x}{b} \right)
  \end{align}
\]
